Resources

FILTERS

Resources

Blog Post 5 min read

Using Machine Learning to Increase Gaming Monetization

Gamers are not shy about reaching into their wallets for premium content and features. They also won’t hesitate to tap the uninstall button at the first sign of trouble. It's not uncommon for a gamer to boot up a hotly anticipated new game or revisit an old favorite only to put it down days or weeks later. The culprit is often gaming monetization issues that get in the way of what would otherwise be a long-term rewarding gaming experience. Not to mention revenue lost when players encounter glitches when trying to make an in-app purchase or subscribe to a game. The solution is for gaming monetization models to enhance rather than distract from the core gaming experience. It's more complicated than it sounds as monetization challenges and opportunities pop up in real-time. The most successful gaming companies use AI and machine learning to monitor revenue streams and quickly see through the complex factors that form real-time opportunities or risks. Gaming Monetization Models 1. Subscriptions Gaming subscriptions first became popular in the advent of multiplayer online (MMO) experiences. Some of the most successful games of all time require subscriptions to maintain access to the game. In recent years, companies have found this model is challenging to scale. The advent of free-to-play gaming experiences has also raised the bar on what is considered worthy of a subscription fee. 2. Microtransactions A live service approach supported by microtransactions, or small in-app purchases, is the most popular gaming model on the planet. It embraces the gaming community's insatiable appetite for content and new experiences within the framework of existing, successful titles. 3. Advertising In-game advertising is extremely popular in the mobile game space. Developers use big data concepts combined with performance marketing to acquire customers and target revenue-generating external ads or ads for in-game purchases. In some cases, the data itself is the revenue stream, with information collected per a user agreement sold to third parties. A Balancing Act: Monetization and the Gaming Experience There are few things more important in any business than having a great relationship with the user community. In gaming, monetization models can make or break that relationship. Even minor monetization decisions can have a massive impact on the user experience and directly translate to churn, reduced player spending, and negative reviews. A complex combination of factors influence how monetization practices and models enhance or detract from a user's experience with a game. Different types of users have varying interests regarding what products or services they are interested in buying. It's essential to tailor the gaming experience to individual users and their behavior in real-time to maximize revenue while at the same time putting an excellent gaming experience ahead of everything else. The highest-performing companies in this space use AI and machine learning to optimize the user experience, which directly translates to better, more consistent revenue streams. Using AI/ML to Improve User Experience and Increase Monetization Online gaming provides companies with an ocean of data with the potential to give intelligence to monetization decisions and directly improve the gaming experience. For example, an AI algorithm could use big data to quickly identify which new users were likely to spend money in the game and immediately identify changes in users’ behavior patterns. In addition to enhancing proactive marketing approaches, AI/ML can optimize the gaming experience and monetization outcomes in real-time. By learning the usage patterns of user segments, these powerful algorithms can immediately identify challenges in patterns due to game mechanics, game economics, or technical issues with payment systems and promotional tools before they impact the gamer or the company’s bottom line. Ensuring a Seamless Gaming Experience for Outfit7 Users Outfit7's gaming portfolio represents one of the most beloved mobile app brands, with Talking Tom and Friends games and video content at the top. With over 350 million active app users, it takes a continuous stream of exciting new content to keep its customers engaged. The challenge they faced was safeguarding the customer experience while also pushing updates to their backend multiple times a day to support add-on purchases and in-game ads, which directly interacted with user gameplay. Their existing monitoring processes and tools couldn't identify and alert performance pitfalls caused by the updates in real-time. The user experience was suffering. With Anodot's Gaming Analytics machine learning solutions, Outfit7 set up alerts based on performance anomalies with customizable significance. Their monitoring and intervention process, powered by machine learning, automatically provided their operators with unique insights and critical metrics, allowing them to stay ahead of performance concerns before they had an impact on customers. AI/ML Empowered Gaming Analytics with Anodot Game developers are no strangers to complex problems. There are multiple operating systems with different versions, devices with unique configurations, graphics engines, and so much more. With all of this on their plate, creating monetization opportunities based on manual user behavior monitoring is not feasible. Anodot’s Autonomous Business Monitoring can observe every single metric, learn its normal behavior on its own, and identify anomalies in real-time. Anodot tracks critical gaming metrics such as spikes and drops in usage, repeat players and purchases, and the number of app-store reviews. Not only does catching and resolving these anomalies drastically enhance the user experience but ultimately it helps companies improve monetization and revenue.
Blog Post 6 min read

Business Monitoring for Gaming: Catch More Profit Opportunities with AI

Monitoring application performance, monetization, third-party platforms, and the many other workings of a game is incredibly complex. Learn how Autonomous Business Monitoring can help identify revenue-generating opportunities faster and more accurately.
Blog Post 5 min read

Anodot Out-Of-The-Box Zero Touch Network Monitoring

Anodot is built to deliver value fast with seamless integration, simple on-boarding and ongoing use, and completely autonomous monitoring and correlation out-of-the-box
Blog Post 6 min read

API Monitoring Best Practices

Though invisible to most users, APIs are the backbone of modern web applications. Developers love them because they facilitate complex integrations between systems and services. The business loves them because integrating disparate systems to create new products and services drives innovation and growth. The challenge with this transformative connectivity is the dependencies that exist between systems. API failure can result in performance degradation, data anomalies, or even system-wide outages. That's why API monitoring is emerging as one of the industry's primary concerns in 2021 and beyond. The Challenges of Monitoring APIs APIs are rapidly evolving as adoption continues to grow across industries, but companies are still facing challenges in adopting strategies to monitor and maintain this critical technology. Common issues include performance, balancing response time and reliability constraints, and data quality. While APIs are designed to solve complex problems, new complexities can manifest themselves in the management and monitoring of the APIs. Here are some of the most significant pain points: The Black Box In software development, a 'black box' refers to software whose inner workings are kept private and unexposed to the interfaces it services. One of the primary benefits of API-oriented architectures like microservices is that two systems or services can exchange data without either side understanding the inner workings of the other. However, this can create challenges when issues emerge in testing or production. The difficulty is often in determining whether a case is associated with one of the APIs or the applications they are servicing. Multiple, Siloed Data Sources Another strength of APIs is integrating disparate applications and sources of data to form a new application that adds value in its own right for users or the business. From the API's perspective, call sequencing, input parameters, and parameter combinations all play a role in how that data will be processed and passed into an application. A complex dance is involved to ensure the data from all of these different sources are processed correctly. It takes an equally sophisticated monitoring framework to observe these interactions. Overhead For many applications, response time is a critical factor for the user experience. As a result, some monitoring solutions can impact API performance and degrade the user experience. Overhead concerns are not limited to software performance. Operations teams are often the most overburdened members of the staff in terms of workload. Performing analytical tasks to understand the information coming from monitoring tools can exacerbate this problem, especially if false positives get out of control. Lack of Context/Actionable Data The work of APIs is inherently technical in nature. As a result, it can be challenging to relate data on API availability and performance back to value streams within IT and the business.   API Monitoring Best Practices While the best practices for API monitoring sometimes vary by industry or software categories, there are a handful of strategies that all organizations should practice. Continuous Monitoring The DevSecOps world brought continuous monitoring to cybersecurity with processes and dedicated tools to constantly assess software systems for vulnerabilities. Organizations should consider their APIs as critical as software vulnerabilities and infrastructure availability. Assess APIs 24/7, 365 days a year, with multi-step calls that simulate internal and external interfacing. Push monitoring beyond availability and performance API failure and response time degradations can have a massive impact on the user experience and the business. But what about data and functional correctness? Even if APIs are available and responsive, it doesn't mean they are performing correctly. Data anomalies can have a tremendous impact on the quality of an application and the reputation of a business. Consumability Data generated by an API monitoring tool must be consumable by human operators and systems configured for an automated response. In addition, data should be aggregated and visualized, preferably with actionable insights to reduce resolution times and minimize operator burden when problems occur. If monitoring tools are too difficult to use, operators won't have time to take advantage of all of the benefits. Contextual Awareness for Business For monitoring to deliver value to end-users and the business, it requires context. There needs to be an established baseline of normal behavior and usage patterns and an understanding of how things like seasonality or holidays impact that behavior. This type of information empowers developers and system architects to optimize APIs for the peaks and valleys that businesses deal with every year. API Monitoring with Anodot The exponential growth of web services in the last decade was driven mainly by the proliferation of APIs. Today, they form the backbone of digital transformation and modern application development. For this reason, API monitoring is just as critical as keeping tabs on servers and infrastructure. Autonomous API Monitoring is a game-changer for businesses that need to go further than monitoring API availability and push towards continuously improving their users' experience. The system is simple to set up, with built-in connectors that allow application code to send events directly to a web application. It can learn the expected behavior of all critical application metrics within minutes and immediately start monitoring for anomalous behavior at every endpoint, including latency, response time, error rates, and activity limits. A fintech client using Anodot’s Autonomous Business Monitoring platform observed a spike in activity with an external API partner that the system leveraged for payouts, indicating a potential for fraud, churn, or a compromised account. Because Anodot automatically monitors all API data in real time, the incident was picked up instantly and the customer was alerted. As a result, the customer could intervene and forward it to their fraud team for investigation before it was too late to prevent further damage.   It isn't sufficient for API monitoring solutions to identify and alert performance degradations and data anomalies. By this point, the damage to critical systems and the business are already happening, with breaches to Service Level Agreements being one of the principal concerns. Machine learning empowers API monitoring solutions to identify and understand normal behavior across the application stack so operators can address issues with functionality, performance, correctness, and speed before they impact critical systems.
Cloud Cost Optimization
Blog Post 4 min read

Why Dashboards Are Not Enough to Proactively Monitor Your Business

How much is your company losing by reacting to problems after they’ve had a negative impact on your bottom line?  How many customers churn in the time it takes you to notice complaints to your call center?  Proactive business monitoring allows you to detect incidents before they have a negative impact on your company’s revenue and reputation. There are tremendous opportunities for forward-thinking companies embracing AI to monitor and learn data as it streams in order to detect anomalies.   Left behind will be organizations still relying on the reactive approach of traditional solutions that can’t keep up with the volume and complexity of today’s data.  It’s one reason global advisory firm Gartner predicts the decline of BI dashboards and a move to proactive solutions that use AI-driven technology.  Business Benefits of Proactive Business Monitoring 1. Reduce Operational Costs Reduce operational overhead by proactively solving issues that affect revenue and customers. By speeding up time to detection, your teams will spend less time finding and fixing incidents and more time on activities that drive business value.  2. Improve Customer Experience According to Salesforce, 80% of consumers say customer experience is just as essential as the product or service itself. The best way to improve the customer journey is to make it seamless and free of errors. Proactive monitoring ensures your team gets an alert that something is wrong before your customer notices.  3. Protect Revenue The revenue ecosystem for most organizations today is complex and fragmented, with billions of daily events across segments, products and payment providers. AI monitoring can catch payment issues and missing revenue in real time.  How Traditional BI Dashboards Fall Short of Proactive Monitoring Businesses in today’s data-driven world are tracking thousands of metrics and KPIs and often billions of events each day. Conventional business intelligence (BI) solutions aren’t equipped to deliver the real-time insight needed to catch costly errors.  The following challenges are reasons businesses are ditching BI dashboards in favor of a more automated approach.   1. Business Insight Latency Analyzing data in traditional dashboards is reactive and slow by nature. Retrospective analysis uses historical data to understand what happened in the past in order to spot trends. To get meaningful insights, analysts need to drill down to find answers, which is a time-consuming process. 2. Manual Analysis To ensure the business is alerted to any critical incidents, dashboard analysts have to manually scan for issues and trends. This error-prone process doesn’t provide the automated insight organizations need to stay ahead of problems before they become too costly and damaging.  3. Alert Fatigue The static thresholds of traditional BI platforms result in false positives, which lead to alert storms and false negatives, which pose the risk of missing incidents entirely. They are a drain on resources and reduce the time that could be spent improving efficiencies and delivering business value. [CTA id="dd9d689f-6a6f-4d73-b463-675c736a0bd1"][/CTA] The Essentials of Proactive Business Monitoring The most competitive companies today are using AI-powered business monitoring and anomaly detection to become proactive in everything they do. Gone are the days of finding out about a problem after the customer does or losing tens of thousands after an issue was detected in a payment gateway.  If proactive insight aligns with your business goals, make sure you include the following essentials:  1. Real-Time Detection To find and fix business incidents as they’re happening you’ll need a solution that detects anomalies in real-time. AI and ML-driven business monitoring learns normal patterns of data and can quickly detect incidents as they are happening.  2. Correlation Analysis The summarizing nature of dashboard tools can prevent businesses from understanding the root cause and importance of each incident. AI solutions that group and correlate anomalies ensure that your team gets the most important insights first and eliminates alert storms.  3. Holistic Visibility It’s important that business monitoring solutions integrate data from all available data sources and aggregate into one centralized analytics platform. Breaking down silos will give you comprehensive monitoring and correlation for fast and proactive detection.  Use Cases for Proactive Business Monitoring Customer Experience Monitoring  Monitoring metrics across the customer journey is critical to optimizing how customers interact with your business . Proactive solutions alert you to issues in conversion rates, login issues, subscribers and other critical KPIs to optimize the customer experience.  Payments and Revenue Monitoring  Issues with payment platforms, card transactions or online checkouts can cost businesses hundreds of thousands in revenue if not detected early. Proactive anomaly detection finds the root cause of the issue right away for fast resolution. If your organization is ready to step up your monitoring game and become more proactive, talk to us about how we can help get you there. 
Blog Post 4 min read

Build resilience into your HFC network with zero touch monitoring

Learn how leading CSPs use AI-based monitoring solutions to increase customer satisfaction, reduce Opex costs, and protect revenue and brand equity
Blog Post 3 min read

Good Catch: Partner Monitoring

In order to deal with the complexity of partner monitoring, adtech, e-Commerce and other companies with partner networks have turned to automated business monitoring.
Blog Post 5 min read

Ways AI is Driving More Efficient Application Performance Monitoring

Companies that use artificial intelligence and machine learning to independently monitor databases and the data that's being stored are reaping huge wins in saved time and costs. And it's typically the DataOps teams that can take this project on to success.
Blog Post 5 min read

Automated Anomaly Detection: The next step for CSPs

Advanced anomaly detection solutions alert operations teams in real-time to critical performance and quality of service issues across the network, dramatically reducing time to detection and resolution.